Ergebnisse unserer Messungen

Wir haben an den beiden Klipschörern alle Messungen durchgeführt, die wir in unserem Abhörraum auch an anderen Boxen vorgenommen, selbstverständlich unter Einhaltung der üblichen Meßbedingungen, so daß die Ergebnisse dieser Messungen mit denen an anderen Boxen durchgeführten ohne weiteres vergleichbar sind.

Schalldruckkurven, k_1 und k_2. Bild 5 zeigt die in 2 m Abstand, Mikrofon in 113 mm Höhe, bei einem Pegel von 85 Phon bezogen auf 100 Hz breites Rauschen von 1 kHz Mittelfrequenz gemessene Schalldruckkurve sowie die Verzerrungen k_1. Selbstverständlich haben wir auch den kubischen Kufirgrad k_2 gemessen, aber wie man sieht, ist dieser im gesamten Übertragungsbereich ohnehin 30 Hz kleiner als 0,5%. Die Schalldruckkurve ist außerordentlich ausgeglichen. Oberhalb 8 kHz zeigt sie den durchaus erwartbaren Abfall der nur noch Ober tonanteile enthal tenden Höhen. Hingegen ist der Bass schon bei 25 Hz mit einem Pegel von nur −5 dB bezogen auf 1 kHz praktisch schon voll da.

Praktische Betriebsleistung. Darunter verstehen wir die elektrische Leistung, die der Verstärker abgeben muß, damit eine Box in 1 m Abstand mit rosa Rauschen als Programm 91 Phon erzeugt. Das Klipschorn benötigt hierfür nur 0,3 W. 0,8 W erzeugen unter diesen Bedingungen schon 101 Phon. Dies bedeutet, daß das Klipschorn einen außerordentlich guten Wirkungsgrad aufweist. Da es außerdem noch belastbar ist, kann man verzerrungsfrei ungewöhnlich hohe Schallpegel erzeugen oder entsprechend große Räume ausschalten. Die Ergebnisse unserer Messungen sprechen dafür. Sie wecken nicht unbeträchtliche Erwartungen hinsichtlich der Klangqualität dieser Boxen.

Musik-Hörtest

Zusammenfassung

K-Eckhorn (Schnitt von der Seite)

(Buchstaben den jeweiligen Einzel-Bauteilen zuzuordnen)
K-Eckhorn (Schnitt von vorne)
19 mm Birkensperrholz
alle anderen Teile
13 mm Birkensperrholz
1. EINLEITUNG

Es handelt sich um ein Exponential-Lautsprechersystem. Das Bassgehäuse ist ein gefaltetes Exponentialhorn. Die Mittel- und Hochtonlautsprecher sind normale Exponentialhörner.

Das Gehäuse besteht aus 38 Einzelteilen. 36 davon werden im Bassgehäuse verbaut; die restlichen 2 bilden den Aufsatz bzw. die Schallwand für die Mittel-Hochtontsysteme.

Meine Erfahrung als Kursleiter hat aber gezeigt, dass auch Anfänger, dh. Leute ohne besonders handwerkliches Geschick, dieses Hornsystem bei genauer Beachtung der Bauanleitung problemlos bauen können.
Beim Bau werden alle Teile sukzessive miteinander verleimt. Als Leim wird vorteilhaft ein kalter Kunstharzkleber verwendet (eventuell mit Schraubzwingen fixieren). Die Leimfügen können auch durch Nageln oder Schrauben verstärkt werden. Sehr wichtig ist, dass alle Leimfügen luftdicht sind. Zeigen sich zwischen verleimten Teilen durchlässige Fugen, so können diese mit Leim oder dauerelastischem Kitt (Thiokal- oder Silikonkitt, Markenname z.B. Colitogum, kann bei der ACR in Kartuscheform a Fr. 12.— bezogen werden) abgedichtet werden.

2. ZUSAMMENBAU

Wir empfehlen Ihnen, vor dem Beginn der Arbeiten die Bauanleitung aufmerksam durchzulesen. So haben Sie jederzeit den Überblick, wie die verschiedenen Arbeitsvorgänge ablaufen, was speziell zu beachten ist und wie das Endergebnis aussieht.

Der Zusammenbau unterteilt sich in 3 Hauptteile:

2.1. Lautsprecher-Gehäuse

Das Bassgehäuse wird in zwei Schritten angefertigt. Im ersten Schritt wird der Kern gebaut. Danach wird der ”Mantel”, also die Außenwände, zusammengesetzt und dieser schliesslich mit dem Kern zusammengesetzt.

2.1.1. Kern

Der Kern wird auf der liegenden Frontplatte A aufgebaut. Zuerst werden auf der Innenseite der Frontplatte A die nötigen Hilfslinien aufgezeichnet.
Es sind dies in der Längsrichtung die Linien x1 bis x5 und in der Querrichtung die Linien y1 bis y5. Reihenfolge des Aufzeichnens: x3, x1, x2, x5, x4, y1, y3, y5, y2 und y4.
Sind die Linien aufgezeichnet, so beginnt das Zusammensetzen der Teile wie folgt:

Längsrippe C axial auf die Längsachse x3 einmitten. An den Enden bündig mit y1 und y5.

Dreieckleisten P mit ihrer breitsten Fläche auf die Querachse y3 einmitten und an Längsrippe C anschliessen. Die beiden Aufsichten der Dreieckleisten steigen so mit 45 Grad von der Frontplatte an.

Dreieckleisten Q mit einer Schmalseite so auf die Frontplatte A befestigen, dass ihre Kanten mit dem rechten Winkel auf den Achsen y1 bzw. y5 liegen und die inneren Enden an die Längsrippe C stossen. Die äusseren Enden der Dreieckleisten Q liegen nun genau auf den Längsachsen x1 bzw. x5. Die Aufsichten der Dreieckleisten Q steigen wie diejenigen von P mit 45 Grad an.

Seitenteile E innen bündig mit den Achsen x1 bzw. x5, also an die äusseren Enden von Q stossend so auf die Frontplatte leimen, dass die abgeschrägten Kanten nach aussen zeigen. Die äusseren Schmalseiten sind bündig mit den Querachsen y1 bzw. y5 und den Aussenflächen der Dreieckleisten Q.

Teile D mit den spitz abgeschrägten Kanten auf den Schnittpunkt y2 mit x1 und x5 bzw. x1 und x5 an die Teile E befestigen. Die stumpf abgeschrägten Kanten der Teile D werden auf der Achse y3 so zusammengefügt, dass die Teile D innen mit den Hilfslinien x2 bzw. x4 bündig sind.
Nun werden die Schallwand B und der Teil F nach Abbildung 3 vollflächig aufeinander geleimt und gut zusammengepresst. Ist der Leim gut getrocknet so wird mit einer Stichsäge der Schallschlit von 335 x 75 mm ausgesägt (kann auch fertig ausgesägt geliefert werden). Es empfiehlt sich nun den Basslautsprecher auf dem Teil F zentrisch einzumitten, so dass er axial über dem Schallschlit liegt. Nun sind die Schraubenlöcher für die Befestigung des Basslautsprechers mit einer Ahle gut vorzubohren. Diese Vorbereitungsarbeit erleichtert den späteren Einbau des Lautsprecherchassis in das fertige Bassgehäuse.

Abb. 3

Die derartig vorbereiteten Teile B und F werden nun wie Abbildung 4 zeigt auf die Teile D und C, welche bereits auf die Frontplatte A befestigt sind, geleimt und gut angepresst, so dass keine luftdurchlässigen Fugen bleiben.
Die Aussenkanten der Schallwand B liegen genau über den Achsen x1, x5, x2 und y4.

Nun kommt wohl einer der anspruchsvolleren Arbeiten beim Zusammenbau des K1 Hornsystems. Die beiden G-Teile und der Teil H, also drei Teile, müssen gleichzeitig genau zusammenpassend nach Abbildung 4 auf die Schallwand B befestigt werden. Dies geschieht am besten mit folgenden Vorbereitungen:

In die Aussenkante der Schmalseiten der Schallwand B werden feine Nägel oder starke Stecknadeln so eingeschlagen, dass die schräg aufzustellenden Teile G mit der längeren abgeschrägten Kante mit der Kante der Schallwand B bündig sind. So wird verhindert, dass die Teile G beim Zusammenbau ständig wie ein Kartenhaus auf die Schallwand B zusammenklappen.

Um später das Lautsprecherkabel vom Basslautsprecher aus dem Gehäuse zu führen, wird mindestens 50 mm von der Verbindungs kante der Teile H und G ein Loch von ca. 5 mm gebohrt.

Nun sind sämtliche Arbeiten am Kern des Bassgehäuses fertiggestellt.
2.1.2. Mantel

Die Arbeiten am Gehäuse des K E c k-Horn- systems sind nun beendet. Die beiden verbleibenden Teile S sind die Abschlussdeckel auf die Montageöffnungen der Basslautsprecher in den Teilen K und werden erst nach der Montage der Basslautsprecher befestigt.
Abb. 7
2.2. Einbau der Lautsprecher-Chassis

Zuerst wird am Basslautsprecher ein mindestens 2 m langes Kabel befestigt, an welchem der Plus- und der Minuspol erkennbar angeschlossen sind (z.B. ein Pol fein gerippt). Der Pluspol am Lautsprecher ist mit einem roten Punkt gekennzeichnet. Die Verbindung der gleichen Pole vom Lautsprecher zur Frequenzweiche sind wichtig, da beim Verbinden ungleicher Pole die Lautsprecher phasenverschoben arbeiten.
